Jumat, 08 Mei 2015

Makalah fotosintesis



I.     FOTOSINTESIS
A.  Pengertian Fotosintesis
Fotosintesis adalah suatu proses biokimia yang dilakukan tumbuhan untuk memproduksi energi terpakai (nutrisi) dengan memanfaatkan energi cahaya. Fotosintesis juga dapat di artikan proses penyusunan atau pembentukan dengan menggunakan energi cahaya atau foton. Sumber energi cahaya alami adalah matahari yang memiliki spektrum cahaya infra merah (tidak kelihatan), merah, jingga, kuning, hijau, biru, nila, ungu dan ultra ungu (Darmawan. 1983)
Hasil dari Fotosintesis adalah glukosa yang dilakukan tumbuhan, alga, dan beberapa jenis bakteri dengan menggunakan zat hara, karbondioksida, dan air serta dibutuhkan bantuan energi cahaya matahari. Hampir semua makhluk hidup bergantung dari energi yang dihasilkan dalam fotosintesis. Akibatnya fotosintesis menjadi sangat penting bagi kehidupan di bumi. Fotosintesis juga berjasa menghasilkan sebagian besar oksigen yang terdapat di atmosfer bumi. Organisme yang menghasilkan energi melalui fotosintesis (photos berarti cahaya) disebut sebagai fototrof. Fotosintesis merupakan salah satu cara asimilasi karbon karena dalam fotosintesis karbon bebas dari CO2 diikat (difiksasi) menjadi gula sebagai molekul penyimpan energi. Cara lain yang ditempuh organisme untuk mengasimilasi karbon adalah melalui kemosintesis, yang dilakukan oleh sejumlah bakteri belerang (Darmawan. 1983)
Proses fotosintesis berlangsung dengan adanya spektrum cahaya tampak, dari ungu sampai merah, infra merah dan ultra ungu tidak digunakan dalam fotosintesis.Fotosintesis menghasilkan karbohidrat dan oksigen, oksigen sebagai hasil sampingan dari fotosintesis, volumenya dapat diukur, oleh sebab itu untuk mengetahui tingkat produksi fotosintesis adalah dengan mengatur volume oksigen yang dikeluarkan dari tubuh tumbuhan (Darmawan. 1983)
B.  Proses Fotosintesis
Pada tumbuhan, organ utama tempat berlangsungnya fotosintesis adalah daun. Namun secara umum, semua sel yang memiliki kloroplas berpotensi untuk melangsungkan fotosintesis. Di organel inilah tempat berlangsungnya fotosintesis, tepatnya pada bagian stroma. Hasil fotosintesis disebut fotosintat, biasanya dikirim ke jaringan-jaringan terdekat terlebih dahulu. Pada dasarnya, rangkaian reaksi fotosintesis dapat dibagi menjadi dua bagian utama: reaksi terang (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida) (Campbell, 2002).
Reaksi terang terjadi pada grana (tunggal: granum), sedangkan reaksi gelap terjadi di dalam stroma. Dalam reaksi terang, terjadi konversi energi cahaya menjadi energi kimia dan menghasilkan oksigen (O2). Sedangkan dalam reaksi gelap terjadi seri reaksi siklik yang membentuk gula dari bahan dasar CO2 dan energi ATP dan NADPH. Energi yang digunakan dalam reaksi gelap ini diperoleh dari reaksi terang. Pada proses reaksi gelap tidak dibutuhkan cahaya matahari. Reaksi gelap bertujuan untuk mengubah senyawa yang mengandung atom karbon menjadi molekul gula (Campbell, 2002).
Dari semua radiasi matahari yang dipancarkan, hanya panjang gelombang tertentu yang dimanfaatkan tumbuhan untuk proses fotosintesis, yaitu panjang gelombang yang berada pada kisaran cahaya tampak (380-700 nm). Cahaya tampak terbagi atas cahaya merah (610 - 700 nm), hijau kuning (510 - 600 nm), biru (410 - 500 nm) dan violet (< 400 nm). Masing-masing jenis cahaya berbeda pengaruhnya terhadap fotosintesis. Hal ini terkait pada sifat pigmen penangkap cahaya yang bekerja dalam fotosintesis. Pigmen yang terdapat pada membran grana menyerap cahaya yang memiliki panjang gelombang tertentu. Pigmen yang berbeda menyerap cahaya pada panjang gelombang yang berbeda. Kloroplas mengandung beberapa pigmen (Lakitan, 2007).
C.  Reaksi-Reaksi yang Terjadi dalam Proses Fotosintesis
1.    Reaksi Terang
Reaksi terang adalah proses untuk menghasilkan ATP dan reduksi NADPH2. Reaksi ini memerlukan molekul air dan cahaya matahari. Proses diawali dengan penangkapan foton oleh pigmen sebagai antena. Reaksi terang melibatkan dua fotosistem yang saling bekerja sama, yaitu fotosistem I dan II. Fotosistem I (PS I) berisi pusat reaksi P700, yang berarti bahwa fotosistem ini optimal menyerap cahaya pada panjang gelombang 700 nm, sedangkan fotosistem II (PS II) berisi pusat reaksi P680 dan optimal menyerap cahaya pada panjang gelombang 680 nm (Salisbury, 1995).
Mekanisme reaksi terang diawali dengan tahap dimana fotosistem II menyerap cahaya matahari sehingga elektron klorofil pada PS II tereksitasi dan menyebabkan muatan menjadi tidak stabil. Untuk menstabilkan kembali, PS II akan mengambil elektron dari molekul H2O yang ada disekitarnya. Molekul air akan dipecahkan oleh ion mangan (Mn) yang bertindak sebagai enzim. Hal ini akan mengakibatkan pelepasan H+ di lumen tilakoid. Dengan menggunakan elektron dari air, selanjutnya PS II akan mereduksi plastokuinon (PQ) membentuk PQH2. Plastokuinon merupakan molekul kuinon yang terdapat pada membran lipid bilayer tilakoid. Plastokuinon ini akan mengirimkan elektron dari PS II ke suatu pompa H+ yang disebut sitokrom b6-f kompleks (Salisbury, 1995).
Sitokrom b6-f kompleks berfungsi untuk membawa elektron dari PS II ke PS I dengan mengoksidasi PQH2 dan mereduksi protein kecil yang sangat mudah bergerak dan mengandung tembaga, yang dinamakan plastosianin (PC). Kejadian ini juga menyebabkan terjadinya pompa H+ dari stroma ke membran tilakoid.
Elektron dari sitokrom b6-f kompleks akan diterima oleh fotosistem I. Fotosistem ini menyerap energi cahaya terpisah dari PS II, yang menerima elektron yang berasal dari H2O melalui kompleks inti PS II lebih dahulu. Sebagai sistem yang bergantung pada cahaya, PS I berfungsi mengoksidasi plastosianin tereduksi dan memindahkan elektron ke protein Fe-S larut yang disebut feredoksin (Lakitan, 2007).
Selanjutnya elektron dari feredoksin digunakan dalam tahap akhir pengangkutan elektron untuk mereduksi NADP+ dan membentuk NADPH. Reaksi ini dikatalisis dalam stroma oleh enzim feredoksin NADP+ reduktase. Ion H+ yang telah dipompa ke dalam membran tilakoid akan masuk ke dalam ATP sintase. ATP sintase akan menggandengkan pembentukan ATP dengan pengangkutan elektron dan H+ melintasi membran tilakoid. Masuknya H+ pada ATP sintase akan membuat ATP sintase bekerja mengubah ADP dan fosfat anorganik (Pi) menjadi ATP. Reaksi keseluruhan yang terjadi pada reaksi terang adalah sebagai berikut:
Sinar + ADP + Pi + NADP+ + 2H2O → ATP + NADPH + 3H+ + O2
 









Gambar 1. Mekanisme Reaksi Terang (Moore, 1998)
2.    Reaksi Gelap
Reaksi gelap pada tumbuhan dapat terjadi melalui dua jalur, yaitu siklus Calvin-Benson dan siklus Hatch-Slack. Pada siklus Calvin-Benson tumbuhan mengubah senyawa ribulosa 1,5 bisfosfat menjadi senyawa dengan jumlah atom karbon tiga yaitu senyawa 3-phosphogliserat. Oleh karena itulah tumbuhan yang menjalankan reaksi gelap melalui jalur ini dinamakan tumbuhan C-3. Penambatan CO2 sebagai sumber karbon pada tumbuhan ini dibantu oleh enzim rubisco. Tumbuhan yang reaksi gelapnya mengikuti jalur Hatch-Slack disebut tumbuhan C-4 karena senyawa yang terbentuk setelah penambatan CO2 adalah oksaloasetat yang memiliki empat atom karbon. Enzim yang berperan adalah phosphoenolpyruvate karboksilase (Lakitan, 2007).













Gambar 2. Diagram Siklus Calvin (Ophardt, 2003)
            Diagram ini menelusuri atom karbon yang mengikuti siklus Calvin. Untuk setiap tiga molekul O2 yang memasuki siklus Calvin, hasil bersihnya adalah satu molekul gliseraldehid-3-fosfat(G3P), yaitu suatu gula yang berkarbon 3. Untuk setiap G3P yang disintesis, siklus Calvin menghabiskan 9 molekul ATP dan 6 molekul NADPH. Reaksi terang melanjutkan siklus Calvin dengan menghasilkan kembali ATP dan NADPH. Dalam hubungannya  dengan  pembentukan karbohidrat dalam proses fotosintesis, karbohidrat ini merupakan hasil kerjasama antara reaksi terang dengan siklus Calvin (Lehninger, 1982).
Didalam kloroplas, membran tilakoid adalah tempat berlangsungnya reaksi terang, sedangkan siklus Calvin berlangsung   di   dalam  stroma.   Reaksi   terang  menggunakan  energi matahari   untuk   membentuk   ATP  dan   NADPH,   yang  masing-masing berfungsi  sebagai  energi  kimia  dan  tenaga peereduksi  di  dalam siklus Calvin. Siklus Calvin menggabungkan CO2 menjadi molekul organik, yang dikonversikan menjadi gula (Lehninger, 1982).


D.  Reaksi Fotosintesis pada Tanaman C3, C4 dan CAM
Fotosintesis yang terjadi pada tanaman C3, C4 dan CAM berbeda prosesnya, seperti berikut :
1.    Tumbuhan C3
Tanaman C3 lebih adaptif pada kondisi kandungan CO2 atmosfer tinggi. Sebagian besar tanaman pertanian, seperti gandum, kentang, kedelai, kacang-kacangan, dan kapas merupakan tanaman dari kelompok C3. Pada tanaman C3, enzim yang menyatukan CO2 dengan RuBP (RuBP merupakan substrat untuk pembentukan karbohidrat dalam proses fotosintesis) dalam proses awal assimilasi, juga dapat mengikat O2 pada saat yang bersamaan untuk proses fotorespirasi, fotorespirasi adalah respirasi, proses pembongkaran karbohidrat untuk menghasilkan energi dan hasil samping, yang terjadi pada siang hari. Jika konsentrasi CO2 di atmosfir ditingkatkan, hasil dari kompetisi antara CO2 dan O2 akan lebih menguntungkan CO2, sehingga fotorespirasi terhambat dan assimilasi akan bertambah besar (Kimbal, 1994).
Tumbuhan C3 tumbuh dengan karbon fiksasi C3 biasanya tumbuh dengan baik di area dimana intensitas sinar matahari cenderung sedang, temperatur sedang dan dengan konsentrasi CO2 sekitar 200 ppm atau lebih tinggi, dan juga dengan air tanah yang berlimpah. Tumbuhan C3 harus berada dalam area dengan konsentrasi gas karbondioksida yang tinggi sebab Rubisco sering menyertakan molekul oksigen ke dalam Rubp sebagai pengganti molekul karbondioksida. Konsentrasi gas karbondioksida yang tinggi menurunkan kesempatan Rubisco untuk menyertakan molekul oksigen. Karena bila ada molekul oksigen maka Rubp akan terpecah menjadi molekul 3-karbon yang tinggal dalam siklus Calvin, dan 2 molekul glikolat akan dioksidasi dengan adanya oksigen, menjadi karbondioksida yang akan menghabiskan energi. Pada tumbuhan C3, CO2 hanya difiksasi RuBP oleh karboksilase RuBP. Karboksilase RuBP hanya bekerja apabila CO2 jumlahnya berlimpah. Contoh tanaman C3 antara lain: kedelai, kacang tanah, kentang, dan lain-lain (Rachmadiarti, 2007).


2.    Tumbuhan C4
Tumbuhan C4 dan CAM lebih adaptif di daerah panas dan kering. Pada tanaman C4, CO2 diikat oleh PEP (enzim pengikat CO2 pada tanaman C4) yang tidak dapat mengikat O2 sehingga tidak terjadi kompetisi antara CO2 dan O2. Lokasi terjadinya assosiasi awal ini adalah di sel-sel mesofil (sekelompok sel-sel yang mempunyai klorofil yang terletak di bawah sel-sel epidermis daun). CO2 yang sudah terikat oleh PEP kemudian ditransfer ke sel-sel “bundle sheath” (sekelompok sel-sel di sekitar xylem dan floem) dimana kemudian pengikatan dengan RuBP terjadi. Karena tingginya konsentasi CO2 pada sel-sel bundle sheath ini, maka O2 tidak mendapat kesempatan untuk bereaksi dengan RuBP, sehingga fotorespirasi sangat kecil and G sangat rendah, PEP mempunyai daya ikat yang tinggi terhadap CO2, sehingga reaksi fotosintesis terhadap CO2 di bawah 100 m mol m-2 s-1 sangat tinggi. Laju asimilasi tanaman C4 hanya bertambah sedikit dengan meningkatnya CO2. Sehingga, dengan meningkatnya CO2 di atmosfir, tanaman C3 akan lebih beruntung dari tanaman C4 dalam hal pemanfaatan CO2 yang berlebihan. Contoh tanaman C4 adalah jagung, sorgum dan tebu (Santosa, 1990).
Tetapi pada sintesis C4, enzim karboksilase PEP memfiksasi CO2 pada akseptor karbon lain yaitu PEP. Karboksilase PEP memiliki daya ikat yang lebih tinggi terhadap CO2 daripada karboksilase RuBP. Oleh karena itu,tingkat CO2 menjadi sangat rendah pada tumbuhan C4, jauh lebih rendah daripada konsentrasi udara normal dan CO2 masih dapat terfiksasi ke PEP oleh enzim karboksilase PEP. Sistem perangkap C4 bekerja pada konsentrasi CO2 yang jauh lebih rendah. Tumbuhan C4 dinamakan demikian karena tumbuhan itu mendahului siklus Calvin yang menghasilkan asam berkarbon -4 sebagai hasil pertama fiksasi CO2 dan yang memfiksasi CO2 menjadi APG di sebut spesies C3, sebagian spesies C4 adalah monokotil (tebu, jagung, dll). Reaksi dimana CO2 dikonfersi menjadi asam malat atau asam aspartat adalah melalui penggabugannya dengan fosfoeolpiruvat (PEP) untuk membentuk oksaloasetat dan Pi.Enzim PEP-karboksilase ditemukan pada setiap sel tumbuhan yang hidup dan enzim ini yang berperan dalam memacu fiksasi CO2 pada tumbuhan C4. enzim PEP-karboksilase terkandung dalam jumlah yang banyak pada daun tumbuhan C4, pada daun tumbuhan C-3 dan pada akar, buah-buah dan sel – sel tanpa klorofil lainnya ditemukan suqatu isozim dari PEP-karboksilase (Santosa, 1990).
Reaksi untuk mengkonversi oksaloasetat menjadi malat dirangsang oleh enzim malat dehidrogenase dengan kebutuhan elektronnya disediakan oleh NHDPH. Oksaleasetat harus masuk kedalam kloroplas untuk direduksi menjadi malat. Pembentukkan aspartat dari malat terjadi didalam sitosol dan membutuhkan asam amino lain sebagai sumber gugus aminonya. Proses ini disebut transaminasi. Sel seludang berkas pembuluh disusun menjadi kemasan yang sangat padat disekitar berkas pembuluh. Diantara seludang-berkas pembuluh dan permukaan daun terdapat sel mesofil yang tersusun agak longgar. Siklus calvin didahului oleh masuknya CO2 ke dalam senyawa organik dalam mesofil. Langkah pertama ialah penambahan CO2 pada fosfoenolpirufat (PEP) untuk membentuk produk berkarbon empat yaitu oksaloasetat, Enzim PEP karboksilase menambahkan CO2 pada PEP. Karbondioksida difiksasi dalam sel mesofil oleh enzim PEP karboksilase. Senyawa berkarbon-empat-malat, dalam hal ini menyalurkan atom CO2 kedalam sel seludang-berkas pembuluh, melalui plasmodesmata. Dalam sel seludang berkas pembuluh, senyawa berkarbon empat melepaskan CO2 yang diasimilasi ulang kedalam materi organic oleh robisco dan siklus Calvin. Dengan cara ini, fotosintesis C4 meminimumkan fotorespirasi dan meningkatkan produksi gula. Adaptasi ini sangat bermanfaat dalam daerah panas dengan cahaya matahari yang banyak, dan dilingkungan seperti inilah tumbuhan C4 sering muncul dan tumbuh subur (Santosa, 1990).









 












Gambar 3. Struktur Daun C3 dan C4 (Ophardt, 2003)
3.    Tumbuhan CAM
Tumbuhan C4 dan CAM lebih adaptif di daerah panas dan kering. Crassulacean acid metabolism ( CAM), tanaman ini mengambil CO2 pada malam hari, dan mengunakannya untuk fotosistensis pada siang harinya. Meski tidak menguarkan oksigen dimalam hari, namun dengan memakan CO2 yang beredar, tanaman ini sudah membantu kita semua menghirup udara bersih, lebih sehat, menyejukkan dan menyegarkan bumi, tempat tinggal dan ruangan. Jadi, cocok buat taruh di ruang tidur misalnya. Sayang, hanya sekitar 5% tanaman jenis ini. Tumbuhan CAM yang dapat mudah ditemukan adalah nanas, kaktus, dan bunga lili (Campbell, 2002).
Tanaman CAM, pada kelompok ini penambatan CO2 seperti pada tanaman C4, tetapi dilakukan pada malam hari dan dibentuk senyawa dengan gugus 4-C. Pada hari berikutnya ( siang hari ) pada saat stomata dalam keadaan tertutup terjadi dekarboksilase senyawa C4 tersebut dan penambatan kembali CO2 melalui kegiatan Rudp karboksilase. Jadi tanaman CAM mempunyai beberapa persamaan dengan kelompok C4 yaitu dengan adanya dua tingkat sistem penambatan CO2. Pada C4 terdapat pemisahan ruang sedangkan pada CAM pemisahannya bersifat sementara. Termasuk golongan CAM adalah Crassulaceae, Cactaceae, Bromeliaceae, Liliaceae, Agaveceae, Ananas comosus, dan Oncidium lanceanum. Beberapa tanaman CAM dapat beralih ke jalur C3 bila keadaan lingkungan lebih baik. Beberapa spesies tumbuhan mempunyai sifat yang berbeda dengan kebanyakan tumbuhan lainnya, yakni Tumbuhan ini membuka stomatanya pada malam hari dan menutupnya pada siang hari. Kelompok tumbuhan ini umumnya adalah tumbuhan jenis sukulen yang tumbuh da daerah kering. Dengan menutup stomata pada siang hari membantu tumbuhan ini menghemat air, dapat mengurangi laju transpirasinya, sehingga lebih mampu beradaptasi pada daerah kering tersebut (Lakitan, 2012).
Selama malam hari, ketika stomata tumbuhan itu terbuka, tumbuhan ii mengambil CO2 dan memasukkannya kedalam berbagai asam organic. Cara fiksasi karbon ini disebut metabolisme asam krasulase, atau crassulacean acid metabolism (CAM). Dinamakan demikian karena metabolisme ini pertama kali diteliti pada tumbuhan dari famili crassulaceae. Termasuk golongan CAM adalah Crassulaceae, Cactaceae, Bromeliaceae, Liliaceae, Agaveceae, Ananas comosus, dan Oncidium lanceanum. Jalur CAM serupa dengan jalur C4 dalam hal karbon dioksida terlebih dahulu dimasukkan kedalam senyawa organic intermediet sebelum karbon dioksida ini memasuki siklus Calvin. Perbedaannya ialah bahwa pada tumbuhan C4, kedua langkah ini terjadi pada ruang yang terpisah. Langkah ini terpisahkan pada dua jenis sel. Pada tumbuhan CAM, kedua langkah dipisahkan untuk sementara. Fiksasi karbon terjadi pada malam hari, dan siklus calvin berlangsung selama siang hari (Santosa, 1990).








II.  Respirasi Sel
1.    Pengertian Respirasi Sel
Pada dasarnya, respirasi adalah proses oksidasi yang dialami SET sebagai unit penyimpan energi kimia pada organisme hidup. SET, seperti molekul gula atau asam-asam lemak, dapat dipecah dengan bantuan enzim dan beberapa molekul sederhana. Karena proses ini adalah reaksi eksoterm (melepaskan energi), energi yang dilepas ditangkap oleh ADP atau NADP membentuk ATP atau NADPH. Pada gilirannya, berbagai reaksi biokimia endotermik (memerlukan energi) dipasok kebutuhan energinya dari kedua kelompok senyawa terakhir (Lehninger, 1982).
Kebanyakan respirasi yang dapat disaksikan manusia memerlukan oksigen sebagai oksidatornya. Reaksi yang demikian ini disebut sebagai respirasi aerob. Namun demikian, banyak proses respirasi yang tidak melibatkan oksigen, yang disebut respirasi anaerob. Yang paling biasa dikenal orang adalah dalam proses pembuatan alkohol oleh khamir Saccharomyces cerevisiae. Berbagai bakteri anaerob menggunakan belerang (atau senyawanya) atau beberapa logam sebagai oksidator. Respirasi dilakukan pada satuan sel. Proses respirasi pada organisme eukariotik terjadi di dalam mitokondria (Lehninger, 1982).






 





Gambar 4. Mekanisme Respirasi Sel
1.    Glikolisis
Glikogenolisis, pengubahan glikogen menjadi glukosa. Glikogenolisis adalah lintasan metabolisme yang digunakan oleh tubuh, selain glukoneogenosis, untuk menjaga keseimbangan kadar glukosa di dalam plasma darah untuk menghindari simtoma hipoglisemia. Pada glikogenolisis, glikogen digradasi berturut-turut dengan 3 enzim, glikogen fosforilase, glukosidase, fosfoglukomutase, menjadi glukosa. Hormon yang berperan pada lintasan ini adalah glukagon dan adrenalin (Lehninger, 1982).
Glikolisis, pengubahan glukosa menjadi piruvat dan ATP tanpa membutuhkan oksigen. Glikolisis adalah serangkaian reaksi biokimia di mana glukosa dioksidasi menjadi molekul asam piruvat. Glikolisis adalah salah satu proses metabolisme yang paling universal yang kita kenal, dan terjadi (dengan berbagai variasi) di banyak jenis sel dalam hampir seluruh bentuk organisme. Proses glikolisis sendiri menghasilkan lebih sedikit energi per molekul glukosa dibandingkan dengan oksidasi aerobik yang sempurna. Energi yang dihasilkan disimpan dalam senyawa organik berupa adenosine triphosphate atau yang lebih umum dikenal dengan istilah ATP dan NADH (Lehninger, 1982).














 













Gambar 5. Tahapan Glikolisis (Ophardt, 2003)
Lintasan glikolisis yang paling umum adalah lintasan Embden-Meyerhof-Parnas (bahasa Inggris: EMP pathway), yang pertama kali ditemukan oleh Gustav Embden, Otto Meyerhof dan Jakub Karol Parnas. Selain itu juga terdapat lintasan Entner–Doudoroff yang ditemukan oleh Michael Doudoroff dan Nathan Entner terjadi hanya pada sel prokariota, dan berbagai lintasan heterofermentatif dan homofermentatif. Jalur pentosa fosfat, pembentukan NADPH dari glukosa. Jalur pentose fosfat adalah adalah jalur alternative metabolism glukosa. Jalur ini berlangsung di sitosol. Enzim yang terlibat antara lain G6P, transketolase, dan transaldolase (Lehninger, 1982).





2.    Siklus Krebs

 













Gambar 6. Bagan Siklus Krebs (Lehninger, 1982)
Siklus krebs merupakan tahap kedua respirasi aerob. Nama siklus ini berasal dari nama orang yang menemukan reaksi tahap kedua respirasi aerob ini, yaitu Hans Krebs. Siklus ini disebut juga siklus asam sitrat. Siklus krebs diawali dengan adanya 2 molekul asam piruvat yang dibentuk pada glikolisis yang meninggalkan sitoplasma masuk ke mitokondria. Sehingga, siklus krebs terjadi di dalam mitokondria (Lakitan, 2007).

Tahapan siklus krebs adalah sebagai berikut:

1)      Asam piruvat dari proses glikolisis, selanjutnya masuk ke siklus krebs setelah bereaksi dengan NAD+ (Nikotinamida adenine dinukleotida) dan ko-enzim A atau Ko-A, membentuk asetil Ko-A. Dalam peristiwa ini, CO2 dan NADH dibebaskan. Perubahan kandungan C dari 3C (asam piruvat) menjadi 2C (asetil ko-A).
2)      Reaksi antara asetil Ko-A (2C) dengan asam oksalo asetat (4C) dan terbentuk asam sitrat (6C). Dalam peristiwa ini, Ko-A dibebaskan kembali.
3)      Asam sitrat (6C) dengan NAD+ membentuk asam alfa ketoglutarat (5C) dengan membebaskan CO2.
4)      Peristiwa berikut agak kompleks, yaitu pembentukan asam suksinat (4C) setelah bereaksi dengan NAD+ dengan membebaskan NADH, CO2 dan menghasilkan ATP setelah bereaksi dengan ADP dan asam fosfat anorganik.
5)      Asam suksinat yang terbentuk, kemudian bereaksi dengan FAD (Flarine Adenine Dinucleotida) dan membentuk asam malat (4C) dengan membebaskan FADH2.
6)      Asam malat (4C) kemudian bereaksi dengan NAD+ dan membentuk asam oksaloasetat (4C) dengan membebaskan NADH, karena asam oksalo asetat akan kembali dengan asetil ko-A seperti langkah ke 2 di atas (Lehninger, 1982).
Dapat disimpulkan bahwa siklus krebs merupakan tahap kedua dalam respirasi aerob yang mempunyai tiga fungsi, yaitu menghasilkan NADH, FADH2, ATP serta membentuk kembali oksaloasetat. Oksaloasetat ini berfungsi untuk siklus krebs selanjutnya. Dalam siklus krebs, dihasilkan 6 NADH, 2 FADH2, dan 2 ATP (Lehninger, 1982).







3.    Transpor Elektron

 


            




Gambar 7. Bagsn Transport Elektron (Lehninger, 1982.)
Transpor elektron terjadi di membran dalam mitokondria, dan berakhir setelah elektron dan H+ bereaksi dengan oksigen yang berfungsi sebagai akseptor terakhir, membentuk H2O. ATP yang dihasilkan pada tahap ini adalah 32 ATP. Reaksinya kompleks, tetapi yang berperan penting adalah NADH, FAD, dan molekul-molekul khusus, seperti Flavo protein, ko-enzim Q, serta beberapa sitokrom. Dikenal ada beberapa sitokrom, yaitu sitokrom C1, C, A, B, dan A3. Elektron berenergi pertama-tama berasal dari NADH, kemudian ditransfer ke FMN (Flavine Mono Nukleotida), selanjutnya ke Q, sitokrom C1, C, A, B, dan A3, lalu berikatan dengan H yang diambil dari lingkungan sekitarnya. Sampai terjadi reaksi terakhir yang membentuk H2O. Jadi hasil akhir proses ini terbentuknya 32 ATP dan H2O sebagai hasil sampingan respirasi. Produk sampingan respirasi tersebut pada akhirnya dibuang ke luar tubuh, pada tumbuhan melalui stomata dan melalui paru-paru pada pernapasan hewan tingkat tinggi (Lehninger, 1982).



4.      Fosforilasi oksidatif

 

 

 

 

 

 

 

 

 

 




Gambar 8. Mekanisme Fosforilasi Okdidatif (Rachmadiarti, 2007)
Fosforilasi oksidatif adalah suatu lintasan metabolisme yang menggunakan energi yang dilepaskan oleh oksidasi nutrien untuk menghasilkan ATP, dan mereduksi gas oksigen menjadi air. Walaupun banyak bentuk kehidupan di bumi menggunakan berbagai jenis nutrien, hampir semuanya menjalankan fosforilasi oksidatif untuk menghasilkan ATP. Lintasan ini sangat umum digunakan karena sangat efisien untuk mendapatkan energi, dibandingkan dengan proses fermentasi alternatif lainnya seperti glikolisis anaerobik. Dalam proses fosforilasi oksidatif, elektron yang dihasilkan oleh siklus asam sitrat akan ditransfer ke senyawa NAD+ yang berada di dalam matriks mitokondria. Setelah menerima elektron, NAD+ akan bereaksi menjadi NADH dan ion H+, kemudian mendonorkan elektronnya ke rantai transpor elektron kompleks I dan FAD yang berada di dalam rantai transpor elektron kompleks II. FAD akan menerima dua elektron, kemudian bereaksi menjadi FADH2 melalui reaksi redoks (Lehninger, 1982).
Reaksi redoks ini melepaskan energi yang digunakan untuk membentuk ATP. Pada eukariota, reaksi redoks ini dijalankan oleh serangkaian kompleks protein di dalam mitokondria, manakala pada prokariota, protein-protein ini berada di membran dalam sel. Enzim yang saling berhubungan ini disebut sebagai rantai transpor elektron. Pada eukariota, lima kompleks protein utama terlibat dalam proses ini, manakala pada prokariota, terdapat banyak enzim-enzim berbeda yang terlibat. Elektron yang melekat pada molekul rantai transpor elektron di sisi dalam membran mitokondria akan menarik ion H+ menuju membran mitokondria sisi luar, disebut kopling kemiosmotik,[4] yang menyebabkan kemiosmosis, yaitu difusi ion H+ melalui ATP sintase ke dalam mitokondria yang berlawanan dengan arah gradien pH, dari area dengan energi potensial elektrokimiawi lebih rendah menuju matriks dengan energi potensial lebih tinggi. Proses kopling kemiosmotik menghasilkan kombinasi gradien pH dan potensial listrik di sepanjang membran ini yang disebut gaya gerak proton. Energi gaya gerak proton digunakan untuk menghasilkan ATP melalui reaksi fosforilasi ADP (Lehninger, 1982).
Walaupun fosforilasi oksidatif adalah bagian vital metabolisme, ia menghasilkan spesi oksigen reaktif seperti superoksida dan hidrogen peroksida pada kompleks I. Hal ini dapat mengakibatkan pembentukan radikal bebas, merusak sel tubuh, dan kemungkinan juga menyebabkan penuaan. Enzim-enzim yang terlibat dalam lintasan metabolisme ini juga merupakan target dari banyak obat dan racun yang dapat menghambat aktivitas enzim (Lehninger, 1982).

5.      Dekarboksilasi Oksidatif

Dekarboksilasi Oksidatif atau disingkat dengan DO adalah proses Perubahan Piruvatmenjadi Asetilkoezim – A. Proses ini berlangsung karboksilasi Oksidatif ini di membran luar mitocondria sebagai fase antara sebelum Siklus Krebs ( Pra Siklus Krebs ) sehingga DO sering dimasukkan langsung dalam Siklus krebs. Reaksi oksidasi piruvat hasil glikolisis menjadi asetil koenzim-A, merupakan tahap reaksi penghubung yang penting antara glikolisis dengan jalur metabolisme lingkar asam trikarboksilat (daur Krebs). Reaksi yang diaktalisis oleh kompleks piruvat dehidrogenase dalam matriks mitokondria melibatkan tiga macam enzim (piruvat dehidrogenase, dihidrolipoil transasetilase, dan dihidrolipoil dehidrogenase), lima macam koenzim (tiaminpirofosfat, asam lipoat, koenzim-A, flavin adenin dinukleotida, dan nikotinamid adenine dinukleotida) dan berlangsung dalam lima tahap reaksi (Rachmadiarti, 2007).
Keseluruhan reaksi dekarboksilasi ini irreversibel, dengan ∆ G 0 = - 80 kkal per mol. Reaksi ini merupakan jalan masuk utama karbohidrat kedalam daur Krebs. Tahap reaksi pertama dikatalis oleh piruvat dehidrogenase yang menggunakan tiamin pirofosfat sebagai koenzimnya.Dekarboksilasi piruvat menghasilkan senyawa α-hidroksietil yang terkait pada gugus cincin tiazol dari tiamin pirofosfat. Pada tahap reaksi kedua α-hidroksietil didehidrogenase menjadi asetil yang kemudian dipindahkan dari tiamin pirofosfat ke atom S dari koenzim yang berikutnya, yaitu asam lipoat, yang terikat pada enzim dihidrolipoil transasetilase. Dalam hal ini gugus disulfida dari asam lipoat diubah menjadi bentuk reduksinya, gugus sulfhidril. Pada tahap reaksi ketiga, gugus asetil dipindahkan dengan perantara enzim dari gugus lipoil pada asam dihidrolipoat, kegugus tiol (sulfhidril pada koenzim-A) (Darmawan, 1983).
            Kemudian asetil ko-A dibebaskan dari sistem enzim kompleks piruvat dehidrogenase. Pada tahap reaksi keempat gugus tiol pada gugus lipoil yang terikat pada dihidrolipoil transasetilase dioksidasi kembali menjadi bentuk disulfidanya dengan enzim dihidrolipoil dehidrogenase yang berikatan dengan FAD (flavin adenin dinukleotida) (Darmawan, 1983).




Gambar 9. Dekarboksilasi Oksidatif (Ophartd, 2003)
Akhirnya (tahap reaksi kelima) FADH+ (bentuk reduksi dari FAD) yang tetap terikat pada enzim, dioksidasi kembali oleh NAD+ (nikotinamid adenin dinukleotida) manjadi FAD, sedangkan NAD+ berubah menjadi NADH (bentuk reduksi dari NAD+) (Lehninger, 1982).
6.      Mekanisme Membuka dan Menutupnya Stomata
Transpirasi sangat ditentukan oleh membukanya stomata. Stomata penting kalau air dari sel penutup keluar ke sel – sel sekitarnya. Perubahan – perubahan nilai potensial osmotik di dalam sel penutup disebabkan oleh perubahan kimia yang terjadi din dalam sel penutup tersebut, yang selanjutnya akan mengubah potensial airnya. Sehubungan dengan terjadinya perubahan kimia ini, beberapa teori telah ditemukan (Lakitan, 2007).
Stomata membuka jika tekanan turgor sel penutup tinggi, dan menutup jika tekanan turgor sel penutup rendah.  Ketika air dari sel tetangga memasuki sel penutup, sel penutup akan memiliki tekanan turgor yang tinggi. Sementara itu, sel tetangga yang telah kehilangan air akan mengerut, sehingga menarik sel pennutup kebelakang, maka stomata terbuka. Sebaliknya, ketika air meninggalkan sel penutup dan menuju ke dalam sel tetangga, maka tekanan turgor di dalam sel penutup akan menurun (rendah). Sementara itu, sel tetangga yang mengakumulasi lebih banyak air akan menggelembung, sehingga mendorong sel penutup ke depan, maka stomata tertutup (Lakitan, 2007).
Menutupnya stoma akan menurunkan jumlah CO2 yang masuk ke dalam daun sehingga akan mengurangi laju fotosintesis. Pada dasarnya proses membuka dan menutupnya stoma bertujuan untuk menjaga keseimbangan antara kehilangan air melalui transpirasi dengan pembentukan gula melalui fotosintesis. Mekanisme membuka dan menutupnya stomata akibat tekanan Turgor. Tekanan turgor adalah tekanan dinding sel oleh isi sel, banyak sedikitnya isi selberhubungan dengan besar kecilnya tekanan pada dinding sel. Semakin banyak isi sel, semakin besar tekanan dinding sel. Tekanan turgor terbesar terjadi pada pukul 04.00-08.00. Stomata akan membuka jika kedua sel penjaga meningkat. Peningkatan tekanan turgor sel penjaga disebabkan oleh masuknya air ke dalam sel penjaga tersebut. Pergerakan air dari satu sel ke sel lainnya akan selalu dari sel yang mempunyai potensi air lebih tinggi ke sel ke potensi air lebih rendah. Tinggi rendahnya potensi air sel akan tergantung pada jumlah bahan yang terlarut (solute) di dalam cairan sel tersebut. Semakin banyak bahan yang terlarut maka potensiosmotic sel akan semakin rendah. Dengan demikian, jika tekanan turgor sel tersebut tetap, maka secara keseluruhan potensi air sel akan menurun. Untuk memacu agar air masuk ke sel penjaga, maka jumlah bahan yang terlarut di dalam sel tersebut harus ditingkatkan (Darmawan, 1983).
Ada beberapa faktor yang mempengaruhi membuka dan menutupnya stomata yaitu:
1)   Faktor eksternal: Intensitas cahaya matahari, konsentrasi CO2 dan asam absisat (ABA). Cahaya matahari merangsang sel penutup menyerap ion K+ dan air, sehingga stomata membuka pada pagi hari. Konsentrasi CO2 yang rendah di dalam daun juga menyebabkan stomata membuka.
a.    Karbon dioksida, tekanan parsial CO2 yang rendah dalam daun akan menyebabkan pH sel menjadi tinggi. Pada pH yang tnggi 6-7 akan merangsang penguraian pati menjadi gula, sehingga stomata terbuka.
b.    Air,  apabila tumbuhan mengalami kekurangan air, maka potensial air pada daun akan turun, termasuk sel penutupmya sehingga stomata akan tertutup.
c.    Cahaya, dengan adanya cahaya maka fotosintesis akan berjalan, sehingga CO2 dalam daun akan berkurang dan stomata terbuka.
d.   Suhu, naiknya suhu akan meningkatkan laju respirasi sehingga kadar CO2 dalam daun meningkat, pH akan turun dan stomata tertutup.
e.    Angin, angin berpengaruh terhadap membuka dan menutupnya stomata secara tidak langsung. Dalam keadaaan angin yang bertiup kencang pengeluaran air melalui transpirasi seringkali melebihi kemampuan tumbuhan untuk menggantinya. Akibatnya daun dapat mengalami kekurangan air sehingga turgornya turun dan stomata akan tertutup (Santosa, 1990).
2)   Faktor internal (jam biologis): Jam biologis memicu serapan ion pada pagi hari sehingga stomata membuka, sedangkan malam hari terjadi pembasan ion yang menyebabkan stomata menutup (Santosa, 1990).
Stomata pada tumbuhan berbeda karena perbedaan keadaan letak sel penutup, penyebarannya, bentuk dan letak penebalan dinding sel penutup serta arah membukanya sel penutup, jumlah dan letak sel tetangga pada tumbuhan dikotildan monokotil, letak sel-sel penutup terhadap permukaan epidermis, dan antogene/asal-usulnya. Stomata akan membuka jika kedua sel penjaga meningkat. Peningkatan tekanan turgor sel penjaga disebabkan oleh masuknya air ke dalam sel penjaga tersebut. Pergerakan air dari satu sel ke sel lainnya akan selalu dari selyang mempunyai potensi air lebih tinggi ke sel ke potensi air lebih rendah. Tinggi rendahnya potensi air sel akan tergantung pada jumlah bahan yang terlarut (solute) didalam cairan sel tersebut. Semakin banyak bahan yang terlarut maka potensiosmotic sel akan semakin rendah. Dengan demikian, jika tekanan turgor seltersebut tetap, maka secara keseluruhan potensi air sel akan menurun. Untuk memacu agar air masuk ke sel penjaga, maka jumlah bahan yang terlarut di dalamsel tersebut harus ditingkatkan (Rachmadiarti, 2007).
Aktivitas stomata terjadi karena hubungan air dari sel-sel penutup dan sel-selpembantu. Bila sel-sel penutup menjadi turgid dinding sel yang tipis menggembungdan dinding sel yang tebal yang mengelilingi lobang (tidak dapat menggembung cukup besar) menjadi sangat cekung, karenanya membuka lubang. Oleh karena itu membuka dan menutupnya stomata tergantung pada perubahan-perubahan turgiditas dari sel-sel penutup, yaitu kalau sel-sel penutup turgid lobang membuka dan sel-sel mengendor pori/lubang menutup (Darmawan, 1983).
Pada beberapa tumbuhan misalnya kelompok tumbuhan CAM stoma membuka pada malam hari sedangkan pada siang hari stoma menutup. Pompa proton merupakan adaptasi untuk mengurangi proses penguapan tumbuhan yang hidup di daerah kering. Pada malam hari CO2 masuk ke dalam tanaman dan disimpan dalam bentuk senyawa C4. Selanjutnya senyawa C4 akan membebaskan CO2 pada siang hari sehingga dapat digunakan untuk fotosintesis (Darmawan, 1983).
Adaptasi lainnya yang terdapat pada tumbuhan xerofit untuk mengurangi proses transpirasi yaitu memiliki daun dengan stoma tersembunyi (masuk ke bagian dalam) yang ditutupi oleh trikoma (rambut-rambut yang merupakan penjuluran epidermis. Pada saat matahari terik, jumlah air yang hilang melalui proses transpirasi lebih tinggi daripada jumlah air yang diserap oleh akar. Untuk mengurangi laju transpirasi tersebut stoma akan menutup (Darmawan, 1983).
1)      Pengaruh Pompa Ion Kalium
Aktivitas stomata terjadi karena hubungan air dari sel-sel penutup dan sel-sel pembantu. Bila sel-sel penutup menjadi turgid dinding sel yang tipis menggembung dan dinding sel yang tebal yang mengelilingi lobang (tidak dapat menggembung cukup besar) menjadi sangat cekung, karenanya membuka lobang. Oleh karena itu membuka dan menutupnya stomata tergantung pada perubahan-perubahan turgiditas dari sel-sel penutup, yaitu kalau sel-sel penutup turgid lobang membuka dan sel-sel mengendor pori/lobang menutup (Darmawan, 1983).
Stomata membuka karena sel penjaga mengambil air dan menggembung dimana sel penjaga yang menggembung akan mendorong dinding bagian dalam stomata hingga merapat. Stomata bekerja dengan caranya sendiri karena sifat khusus yang terletak pada anatomi submikroskopik dinding selnya. Sel penjaga dapat bertambah panjang, terutama dinding luarnya, hingga mengembang ke arah luar. Kemudian, dinding sebelah dalam akan tertarik oleh mikrofibril tersebut yang mengakibatkan stomata membuka (Santosa, 1990).
Pada saat stomata membuka akan terjadi akumulasi ion kalium (K+) pada sel penjaga. Ion kalium ini berasal dari sel tetangganya. Cahaya sangat berperan merangsang masuknya ion kalium ke sel penjaga dan jika tumbuhan ditempatkan dalam gelap, maka ion kalium akan kembali keluar sel penjaga. Ketika ion kalium masuk ke dalam sel penjaga, sejumlah yang sama ion hydrogen keluar, dimana ion hidrogen tersebut berasal dari asam-asam organic yang disintesis ke dalam sel penjaga sebagai suatu kemungkinan faktor penyebab terbukanya stomata. Asam organic yang disintesis umumnya adalah asam malat dimana ion-ion hydrogen terkandung didalamnya. Asam malat adalah hasil yang paling umum didapati pada keadaan normal. Karena ion hydrogen diperoleh dari asam organic, pH di sel penjaga akan turun (akan menjadi semakin asam), jika H+ tidak ditukar dengan K+ yang masuk (Santosa, 1990).
Suatu penelitian menunjukkan bahwa turgor sel penjaga berkaitan dengan metabolisme penyerapan ion, terutama K+. Meningkatnya konsentrasi K+ pada sel penjaga, stomata membuka lebih lebar sebaliknya ketika menutup tidak terjadi akumulasi K+. Mekanisme membuka menutupnya stomata terutama tergantung pada akumulasi K+ pada sel stomata dan bukan semata-mata oleh adanya hidrolisa amilum menjadi gula sebagaimana dipercaya selama ini, hidrolisa amilum ini hanya faktor sekunder. Untuk akumulasi K+ ini disediakan sebagian oleh vakuola sel lateral dan sebagian lagi oleh sel epidermis. Akumulasi K+ ini akan berbalik bila stomata menutup, yaitu K+ berakumulasi di sel epidermis. Tidak ada perbedaan electro potential yang menyolok antara setiap sel epidermis dan bagaimanapun keadaan stomata, K+ ditransport secara aktif dan ketika stomata membuka atau menutup memerlukan energy (Santosa, 1990).
2)      Pengaruh Fotosintesis
Adanya klorofil pada sel penjaga mengakibatkan sel penjaga dapat melangsungkan proses fotosintesis yang menghasilkan glukosa dan mengurangi konsentrasi CO2. Glukosa larut dalam air sehingga air dari jaringan di sekitar sel penjaga akan masuk ke dalam sel penjaga yangmengakibatkan tekanan turgor sel penjaga naik sehingga stoma akan membuka. Pengamatan mikroskopis terhadap permukaan daun menunjukkan bahwa cahaya mempengaruhi pembukaan stomata. Pada saat redup atau tidak ada cahaya umumnya stoma tumbuhan menutup. Ketika intensitas cahaya meningkat stoma membuka hingga mencapai nilai maksimum. Mekanisme membuka dan menutupnya stomata dikontrol oleh sel penjaga (Santosa, 1990).
Dibawah iluminasi, konsentrasi solut dalam vakuola sel penjaga meningkat. Bagaimana konsentrasi solut tersebut meningkat? Pertama, pati yang terdapat pada kloroplas sel penjaga diubah menjadi asam malat. Kedua, pompa proton pada membran plasma sel penjaga diaktifkan. Pompa proton tersebut menggerakkan ion H+, beberapa diantaranya berasal dari asam malat, melintasi membran plasma. Asam malat kehilangan ion H+ membentuk ion malat. Hal ini menaikkan gradien listrik dan gradien pH lintas membran plasma. Ion K+ mengalir ke dalam sel tersebut melalui suatu saluran sebagai respon terhadap perbedaan muatan, sedangkan ion Clberasosiasi dengan ion H+ mengalir ke dalam sel tersebut melalui saluran lainnya dalam merespon perbedaan konsentrasi ion H+. Akumulasi ion malat, K+, dan Cl- menaikkan tekanan osmotik sehingga air tertarik ke dalam sel penjaga. Signal yang mengaktifkan enzim yang membentuk malat dan mengaktifkan pompa proton di dalam membran plasma mencakup cahaya merah dan cahaya biru (Santosa, 1990).
Menutupnya stoma akan menurunkan jumlah CO2 yang masuk ke dalam daun sehingga akan mengurangi laju fotosintesis. Pada dasarnya proses membuka dan menutupnya stoma bertujuan untuk menjaga keseimbangan antara kehilangan air melalui transpirasi dengan pembentukan gula melalui fotosintesis. Namun pada Tanaman CAM membuka stomatanya malam hari, pada malam hari terjadi respirasi tidak sempurna dan KH diubah menjadi asam malat, dari respirasi tersebut CO2 tidak dilepaskan, tetap diikat, pH tetap tinggi (7), pati dalam sel penjaga dihidrolisis menjadi gula, Ψs nya menurun, terjadi endoosmosis, Ψp sel penjaga naik, turgor, dinding sel penjaga tertekan ke arah luar, stomata membuka (Lakitan, 2012).
3)      Perubahan Pati Menjadi Gula
            Pada sel penutup terjadi akumulasi gula dan hal ini terjadi pada siang hari. Terakumulasinya gula ini pada siang hari telah menyebabkan potensial osmotik/potensial air sel penutup menjadi rendah, sehingga air dapat masuk ke sel penutup dari sel tetangganya, turgornya naik dan stomata terbuka. Pada malam hari gula ini hilang dari sel penutup yang menyebabkan potensial air sel penutup menjadi tinggi, sehingga air keluar dari sel penutup, turgornya turun dan stomata menutup. Timbul dan hilangnya gula ini dari sel penutup kemudian diketahui disebabkan terjadinya perubahan gula menjadi pati dan sebaliknya. Perubahan pati menjadi gula ini dipengaruhi oleh enzim fosforilase yang mereaksinya (Lakitan, 2012).

            Enzim fosforilase ini dapat berfungsi mempengaruhi reaski yang bolak – balik, yaitu mempengaruhi pengubahan pati menjadi gula dan gula menjadi pati. Pada saat pati diubah menjadi glukosa, berarti terjadi perubahan dari zat tidak larut menjadi zat yang mudah larut dan berarti pula telah terjadi perubahan jumlah partikel di dalam sel penutup, sehingga sel penutup dapat menarik air dari sel – sel sekitarnya (sel tetangga), turgornya naik dan stomata terbuka. Sebaliknya apabila glukosa diubah menjadi pati, akan terjadi pengenceran di dalam sel penutup, sehingga air dari sel penutup akan mengalir ke sel – sel sekitarnya., turgornya menurun dan stomata tertutup (Lakitan, 2012).
Aktivitas enzim fosforilase bergantung pada pH di dalam sel tersebut. Pati diubah menjadi glukosa oleh enzim ini pada pH 6-7. Hal ini dimungkinkan oleh adanya proses fotosintesis yang banyak pengikat CO2, sehingga pH dalm sel menjadi agak tinggi. Pada malam hari karena tidak ada fotosintesis, CO2 yang ada dalam seakan bereaksi dengan air menghasilkan asam karbonat yang selanjtnya akan terurai menjadi H+ dan HCO3-. Terkumpulnya proton dalam sel akan menyebabkan kondisi dalam sel menjadi lebih asam dan pHnya rendah menjadi sekitar 4-5. Pada pH 4-5 aktivitas enzim fosforilase mengubah glukosa menjadi pati kembali (Lakitan, 2012).
III.   Metabolisme Lemak pada Tumbuhan
Lemak atau lipida terdiri dari unsur karbon, hidrogen dan oksigen. Fungsi utama cadangan lemak dan minyak dalam biji-bijian adalah sebagai sumber energi. Cadangan ini merupakan salah-satu bentuk penyimpanan energi yang penting bagi pertumbuhan. Penguraian lemak secara kimiawi menghasilkan energi dalam jumlah yang lebih besar sekitar dua kali lipat dibandingkan dengan energi yang dihasilkan dari penguraian karbohidrat. (Estiti, 1995) Pada sel tumbuhan, cadangan lipid adalah asam lemak. Cadangan ini oleh lipase dihidrolisir menjadi gliserol dan asam lemak. Asam lemak ini dipakai dalam sintesis fosfolipid dan glikolipid yang diperlukan untuk pembentukan organel. Sebagian besar diubah menjadi gula dan diangkut untuk pertumbuhan kecambah. Vakuola merupakan organel yang paling besar volumenya pada sel tumbuhan dewasa. Vakuola sering menempati lebih dari 90% volume protoplas, di mana sisa protoplas yaitu sitoplasma melekat pada dinding sebagai lapisan amat tipis. Tonoplas membatasi vakuola yang berisi cairan (larutan gula, garam, protein, alkaloid, dll.) serta zat ergastik (pati, protein, badan lipid dan berbagai kristal) (Tika, 2011).
Asam lemak pada tumbuhan terdapat dalam bentuk senyawa-senyawa lipid. Senyawa yang termasuk lipid adalah lemak dan minyak, fosfolipid dan glikolipid, lilin dan berbagai komponen kutin dan suberin. Timbunan lemak pada biji terdapat dalam sitoplas dan juga pada koletidon atau endosperm yang dinamakan sferosom. Lemak dan minyak selalu disimpan dalam benda khusus di sitosol dan sering terdapat ratusan sampai ribuan benda di tiap sel penyimpan. Benda ini disebut benda lipid, sferosom dan oleosom. Sebutan oleosom lebih banyak digunakan untuk menyatakan benda yang mengandung minyak dan agar mudah membedakannya dengan peroksisom dan glioksisom. Sedangkan istilah sferosom telah lama digunakan untuk menerangkan organel yang mengandung sedikit lemak. Sferosom mempunyai membran tipis yang memisahkan trigliserid dari cairan sitoplas. Sebagian besar reaksi sintetis asam lemak terjadi di kloroplas daun serta di proplastid biji dan akar (Tika, 2011).
Lemak yang disimpan dalam biji tidak diangkut dari daun, tetapi disintetis in situ dari sukrosa atau gula terangkut lainnya. Kalaupun daun memproduksi lemak dan minyak namun pemindahannya ke buah tidak dapat melalui floem dan xilem karena tidak larut dalam air. Secara kimiawi, senyawa lemak serupa dengan senyawa minyak. Keduanya terdiri dari asam lemak berantai panjang yang teresterifikasi oleh gugus karboksil tunggalnya menjadi hiroksil dari alkohol tiga karbon gliserol. Dengan tiga molekul asam lemak yang teresterifikasi maka lemak dan minyak sering disebut trigliserida. Rumus umum lemak ditunjukkan pada Gambar 1. Sifat lemak umumnya ditentukan oleh jenis asam lemak yang dikandung-nya. Asam-asam lemak yang membentuk lemak biasanya berbeda, dan kadang dua di antaranya sama. Panjang rantai ketiga asam lemak hampir selalu sama dengan jumlah atom karbon genap sebanyak 16 dan 18. Jumlah atom karbon asam lemak biasanya paling rendah 12 dan paling banyak 20. Beberapa asam lemak termasuk asam lemak tidak jenuh karena mengandung ikatan rangkap (Tika, 2011).
A.  Metabolisme Pada Tumbuhan
Pada tumbuhan ada dua metabolisme yaitu metabolisme primer dan sekunder. Proses metabolisme primer menghasilkan senyawa-senyawa yang digunakan dalam proses biosintesis sehari-hari, yaitu karbohidrat, protein, lemak dan asam nukleat. Sebaliknya proses metabolisme sekunder menghasilkan senyawa dengan aktivitas biologis tertentu seperti alkaloid, terpenoid, flavonoid, tannin dan steroid. Sedangkan Metabolit sekunder tidak memiliki fungsi khusus dalam pertumbuhan dan perkembangan tanaman. Senyawa-senyawa tersebut lebih dibutuhkan untuk eksistensi kelangsungan hidup tanaman itu di alam (Tika, 2011).
Fungsi utama metabolit sekunder adalah melindungi tanaman dari serangan mikroba, contohnya tanaman akan membentuk fitoaleksin, senyawa khusus yang disintesis di sekitar sel yang terinfeksi, mempertahankan diri dari gangguan predator, untuk melawan gangguan herbivora yaitu dengan membentuk senyawa toksik yang menyebabkannya menjadi beracun, perlindungan terhadap lingkungan, misalnya antosianin diproduksi untuk melindungi tanaman dari terpaan sinar UV, memenangkan persaingan dengan cara menghasilkan senyawa yang bersifat alelopati, beracun terhadap tanaman lain di sekitarnya, sebagai agen atraktan, menarik kehadiran serangga dan herbivora lain untuk membantu penyebaran biji. Senyawanya berupa pigmen yang membuat organ reproduksi berwarna cerah (Salisbury, 1995).
B.  Prores Pembentukan Minyak Pada Tumbuhan
Kandungan minyak, baik pada tanaman, disintesis dari jalur biokimia yang sama yakni biosintesis asam lemak. Biosintesis asam lemak ini tidak jauh berbeda antara satu tanaman dengan tanaman lainnya, kecuali untuk jalur-jalur alternatif pembentukan asam lemak pada kondisi tertentu. Pembentukan minyak pada tanaman selalu ditandai dengan adanya akumulasi senyawa triasilgliserol (TAG) pada bagian-bagian tanaman, seperti biji dan buah. Berawal dari senyawa TAG inilah, berbagai bentuk lemak yang akan dirubah menjadi minyak disintesis. Bentuk lemak yang dihasilkan masing-masing tanaman akan berbeda-beda tergantung pada strukturnya yang didasarkan pada panjang rantai dan jumlah ikatan tak jenuhnya (Salisbury, 1995).
 










Gambar 10. Skema proses Metabolisme pada tumbuhan (Ophardt, 2003)
Asetil ko-A yang dihasilkan dari piruvat selanjutnya diaktifkan menjadi malonil ko-A yang dikatalis oleh kompleks enzim asetil ko-A karboksilase (ACC) di plastida (Nikolau et al., 2003). Malonil ko-A yang dihasilkan oleh ACC menyusun donor karbon untuk masing-masing siklus lintasan biosintesis asam lemak (Gambar 2). Sebelum memasuki proses biosintesisnya, gugus malonil ditransfer dari ko-A ke kofaktor protein yang disebut acyl carrier protein (ACP), yang merupakan substrat utama komplek enzim yang mensintesis asam lemak. Proses transfer ini dikatalis oleh enzim malonil ko-A:ACP S-maloniltransferase (MAT) (Tika, 2011).
Asam lemak dihasilkan melalui kompleks multisubunit yang dapat dengan mudah dipisahkan yang tersusun atas enzim monofungsional yang dikenal dengan enzim fatty acid sinthase (FAS). FAS menggunakan asetil ko-A sebagai unit awal dan malonil-ACP sebagai elongator. Malonil thioester selanjutnya memasuki rangkaian reaksi kondensasi dengan asetil ko-A dan akseptor asil-ACP. Reaksi kondensasi awal dikatalis oleh enzim 3-ketoasil-ACP sintase tipe III (KAS III) dan menghasilkan 4:0-ACP. Kondensasi selanjutnya dikatalis oleh KAS I (isoform KAS B) yang dapat menghasilkan 16:0-ACP dan KAS II (KAS A) yang akhirnya memperpanjang rantai 16:0-ACP menjadi 18:0-ACP (Pidkowich et al., 2007).
Reaksi tambahan dibutuhkan setelah masing-masing tahapan kondensasi untuk memperoleh asam lemak jenuh dengan dua karbon yang lebih panjang dibandingkan saat siklus awal yang dikatalis oleh sejumlah enzim seperti 3-ketoasil-ACP-reduktase (KAR), hidroksiasil-ACP-dehidratase, dan enoil-ACP-reduktase (ENR) (Mou et al., 2000 cit Baud dan Lepiniec, 2010). Selama proses sintesisnya, gugus asil dihidrolisis oleh asil-ACP-thioesterase (Fat A dan Fat B) yang melepaskan asam lemak bebas. Tipe FatA melepaskan oleat dari ACP, sedangkan thioesterase FatB aktif dengan asil-ACP jenuh dan tidak jenuh (Mayer dan Shanklin, 2007). Asam lemak selanjutnya diaktifkan menjadi ester ko-A di bagian membran luar dari kloroplas oleh rantai panjang asil-koA-sintetase (LACS) sebelum dibawa ke retikulum endoplasma (Baud dan Lepiniec, 2010).
Malonil-koA di sitosol digunakan untuk sintesis VLCFA (very-long-chain fatty acids), yakni asam lemak dengan 20 atau lebih atom karbon. VLCFA terdapat di sel tanaman dalam jumlah yang sangat banyak terutama pada permukaan daun dalam bentuk lapisan lilin dan pada komponen kutilkula dimana senyawa ini berperan dalam proses pertahanan terhadap xenobiotik (Yu et al., 2011). VLCFA adalah prekursor VLC-PUFA yang sangat penting bagi kesehatan dan gizi manusia (Das, 2006 cit Yu et al., 2011) yang hanya dapat dihasilkan oleh tanaman tingkat tinggi (Baud dan Lepiniec, 2010).
Setelah dipisahkan dari ACP, asam lemak bebas dibawa dari plastida dan dikonversi menjadi asil ko-A. Asam lemak yang baru ini dapat diolah menjadi TAG pada biji dan buah yang sedang berkembang melalui beberapa cara, salah satunya melalui jalur Kennedy. Melalui jalur ini, dua rantai asil diesterifikasi dari asil ko-A menjadi gliserol-3-fosfat untuk membentuk asam fosfatidik (PA), yang selanjutnya beberapa senyawa fosfat tersebut akan dibuang sehingga terbentuk diasilgliserol (DAG). Dengan menggunakan asil ko-A sebagai donor asil, enzim diasilgliserol asiltransferase (DAGT) akan mengkonversi DAG menjadi TAG (Baud dan Lepiniec, 2010).

Sebagai alternatif dari jalur Kennedy, asam lemak baru juga dapat bergabung pertama kali dengan lipid membran pada kantung plastida dan atau pada retikulum endoplasma. DAG dan fosfatidilkolin (PC) dapat saling bertukar tempat melalui aktivitas enzim kolinfosfotransferase, yang menggambarkan jalur khusus bagi laju asam lemak ke dalam dan ke luar PC. Beberapa hasil penelitian memperlihatkan adanya bukti yang menyatakan bahwa fungsi PC sebagai senyawa intermediat sangat penting dalam mendorong pembentukan TAG, terutama yang berasal dari tipe PUFA (polyunsaturated fatty acid). Menurut laporan Ohlrogge dan Jaworski (1997) dalam Durrett et al. (2008), diketahui bahwa adanya tambahan proses desaturasi oleat (18:1) yang berlangsung ketika oleat ini diesterifikasi menjadi PC. Hasil studi lainnya juga menunjukkan bahwa asam lemak yang baru dihasilkan dapat langsung diolah menjadi PC melalui mekanisme editing asil, dibandingkan melalui senyawa intermediat PA dan DAG (Bates et al., 2007).
C.  Jalur Sintesis Tag
Ketika TAG telah terbentuk di dalam RE, tepatnya di dalam sub-domain khusus organel (Shockey et al., 2006 cit Baud dan Lepiniec, 2010), TAG selanjutnya dibawa dan diakumulasikan ke struktur sub-seluler yang dikenal sebagai tubuh lipid (lipid body) atau tubuh minyak (oil body). Tubuh minyak merupakan organel berbentuk lonjong, dengan diameter antara 0.2-2.5 μm (tergantung pada spesies tanamannya), yang tersusun atas sebuah matriks TAG yang dikelilingi oleh sebuah lapisan tunggal fosfolipid. Pada lapisan ini, terdapat rantai alifatik yang berorientasi ke TAG yang berada di lumen dan gugus fosfat yang berada di sitosol (Yatsu dan Jacks, 1972 cit Baud dan Lepiniec, 2010). Tubuh minyak ini tumbuh dari domain mikro di dalam RE.

Gambar 11. Jalur Sintesis Tag (Ramli et al., 2002)                                                                                                      
D.  Kandungan Lipid Pada Biji
Penyimpanan asam lemak berbentuk minyak dan lemak dalam jumlah yang relatip besar dapat ditemukan sebagai bahan cadangan penting dalam buah dan bijibijian (Estiti, 1995). Cadangan ini tersimpan dalam endosperm atau perisperm dalam bentuk lipid dengan kandungan yang beragam. Persentase kandungan lipid beberapa biji-bijian pada Tabel 1.
Tabel 1. Kandungan Lipid Pada Biji-bijian.
Spesies
Jaringan Cadangan Utama
Kandungan Lipid
Jagung
Endosperma
5%
Gandum
Endosperma
2%
Kapri
Koletidon
2%
Kacang Tanah
Koletidon
40-50%
Kedelai
Koletidon
17%
Jarak
Endosperma
64%
Bunga matahari
Koletidon
45-50%

Kandungan Lipid pada Biji-bijian yang paling tinggi di peroleh dari biji tumbuhan jarak dengan kandungan lipid 64%, sedangkan kandungan lipid yang terendah di peroleh dari gandum dan kapri dengan kandungan lipid 2%.  Adapun fungsi lipid pada tumbuhan yaitu sebagai komponen struktural membran, dengan jenis lemak yang terlibat gliserolipid, sphigolipid dan sterol. Sebagai senyawa penyimpan (storage compounds) dengan jenis senyawa trigliserida dan lilin. Untuk senyawa aktif dalam reaksi transfer elektron dengan adanya pigmen klorofil, ubuquinon dan plastoquinon. Sebagai fotofroteksi dengan adanya jenis lemak karotenoid. Jenis lemak tokoferol berfungsi untuk perlindungan terhadap kerusakan dari radikal bebas. Untuk jenis kutin suberin dan lilin yang merupakan asam lemak berantai panjang itu memiliki fungsi sebagai penyaringan dan perlindungan air pada permukaan tanaman. Adapun fungsi-fungsi lain dari metabolisme lipid yaitu:
1.      Modifikasi protein ,penambahan dan penyambungan membran dengan jenis asam lemak utama  14 : 0 dan 16 : 0.
2.      Asilasi ,Prenilasi, Glikolisasi, Signaling Internal External dan Senyawa pertahanan dengan jenis-jenis lemak yang terlibat seperti phosphatidy linosytol, delicol, asam asisad, giberelin, minyak atsiri, komponen resin dan terpen (Bates, 2007).
E.  Biosintesis Asam Lemak
Asam lemak dibentuk oleh kondensasi berganda unit asetat dari asetil CoA. Sebagian besar reaksi sintetis asam lemak terjadi hanya di kloroplas daun serta di proplastid biji dan akar. Asam lemak yang disintesis di kedua organel ini terutama adalah asam palmitat dan asam oleat. Asetil CoA yang digunakan untuk membentuk lemak di kloroplas sering dihasilkan oleh piruvat dehidrogenase dengan menggunakan piruvat yang dibentuk pada glikolisis di sitosol. Sumber lain asetil CoA pada kloroplas beberapa tumbuhan adalah asetat bebas dari mikotondria. Asetat ini diserap oleh plastid dan diubah menjadi asetil CoA, untuk digunakan membentuk asam lemak dan lipid lainnya (Salisbury dan Ross, 1995)
Rangkuman reaksi sintetis asam lemak dengan contoh asam palmitat dapat diberikan sebagai berikut.
8 asetil CoA+7ATP3+14 NADPH+14 H+      palmitil CoA + 7 CoA + 7 ADP2- + 7 H2PO4- + 14 NADP+ + 7 H2O
Pada reaksi sintesa asam lemak, enzim CoA dan protein pembawa asil (ACP) mempunyai peranan penting. Enzim-enzim ini berperan membentuk rantai asam lemak dengan menggabungkan secara bertahap satu gugus asetil turunan dari asetat dalam bentuk asetil CoA dengan sebanyak n gugus malonil turunan dari malonat dalam bentuk malonil CoA, seperti ditunjukkan pada reaksi berikut (Weete, 1980).
Acetil CoA + n Malonil CoA + 2n ADPH + 2n H+      CH3(CH2-CH2)n CO CoA + n CO2 + n CoASH + 2n NADP+ + (n-1) H2O
Sintesa asam lemak berlangsung bertahap dengan siklus reaksi perpanjangan rantai asam lemak hingga membentuk rantai komplit C16 dan C18. Biosintesis pada tanaman terjadi di dalam plastida, selama biosintesis asam lemak serangkaian gugus reaksi berulang menggabungkan asetil CoA menjadi gugus asil 16 atau 18 atom karbon.  Sintesis dan metabolisme lipid berlangsug di berbagai organel dan dalam beberapa kasus melibatkan pergerakan lipid dari satu seluler ke kompartemen yang lain.








DAFTAR PUSTAKA
Bates, p. D., j. B. Ohlrogge, and m. Pollard. 2007. Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. Journal of biological chemistry vol. 282 no. 43: pp 31206-31216.
Baud, s. And l. Lepiniec. 2010. Review: physiological and developmental regulation of seed oil production. Progress in lipid research. Doi:10.1016/j.plipres.2010.01.001.
Campbell, N A.,J.B. Reece, & L.G. Mithchell. 2005. Biologi Edisi Kelima. Jakarta: Erlangga
Darmawan. 1983. Pengantar Fisiologi Tumbuhan. Jakarta: PT. Gramedia
Kimbal, John W. 1994. Biologi Jillid 1, 2, 3 Edisi Kelima. Jakarta: Erlanga
Lakitan, Benyamin. 2007. Dasar-Dasar Fisiologi Tumbuhan. Jakarta: PT. Raja Grafindo Persada
Lakitan, Benyamin. 2012. Dasar-dasar Fisiologi Tumbuhan. Rajawali Press, Jakarta.        
Lehninger, Albert L. 1982. Dasar-Dasar Biokimia. Jakarta: Erlangga
Moore, R., Clark, W.D., Vodopich, D.S. 1998. Botany. McGraw-Hill Companies. USA
Ophardt, c. E. 2003. Overview of metabolism. Virtual chem book ofelmhurstcollege.Http://www.elmhurst.edu/~chm/vchembook/5900verviewmet.html. Diakses tanggal 30 Maret 2015.
Rachmadiarti, Fida, dkk. 2007. Biologi Umum. Surabaya : Unesa Unipress
Ramli, U. S., D. S. Baker, P. A. Quant, and J. L. Harwood. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly. Biochemical Journal 364: pp 393–401.
Santosa. 1990. Fisiologi Tumbuhan. Universitas Gadjah Mada, Yogyakarta.
Salisbury, F.B. dan C.W. Ross. 1995. Fisiologi Tumbuhan Jilid 2. Terjemahan dari Plant Physiology oleh D.R Lukman dan Sumaryono. Bandung: ITB, hal. 133-139. Ebook.
Tika. 2011. Makalah Metabolisme Lemak . Universitas Andalas: Padang Zhernia. 2013.
Weete, J.D. 1980. Lipid Biochemistry. Prenum Press New York, pp. 1-129.



1 komentar:

  1. Lucky Club: Lucky Club Casino Site 2021
    Lucky Club Casino and Slot Games at Lucky 카지노사이트luckclub Club online casino offer an authentic gaming experience. Read about the online casinos, Games: 550+Casinos: 650+Online Since: 2008Bonus: Welcome Bonus up to $

    BalasHapus